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TABLE I: c�c spectrum in the Coulomb + linear potential (1).

State Mass (MeV) Remarks

11S0
13S1

�c
J= 

�
c.o.g. 3067:a

�
2979:8� 1:8
3096:87� 0:04

11P1 hc 3526:
13P0
13P1
13P2

�c0
�c1
�c2

)
c.o.g. 3526:a

(
3415:0 � 0:8
3510:51 � 0:12
3556:18 � 0:13

21S0
23S1

�0c
 0

�
c.o.g. 3678:

�
3654:� 10:

3685:96� 0:09

11D2 �c2 3815: 6! D �D (parity)
13D1

13D2

13D3

 
 2
 3

)
c.o.g. 3815:

(
3769:9 � 2:5
6! D �D (parity)

! D �D
2P 3968:
1F 4054:
3S 4118:

D0 �D0 3729:0 threshold
D+D� 3738:6 threshold

D0 �D�0 or D�0 �D0 3871:2 threshold
D�D�� 3879:3 threshold
D+
s D

�
s 3973:2 threshold

D�0 �D�0 4013:4 threshold
D�+D�� 4020:0 threshold

D+
s
�D��
s or D�+

s
�D�
s 4099:0 threshold

D�+
s D��

s 4224:8 threshold

aInput values.

threshold, and so will be typically narrow charmonium
states. In the absence of strong inuence from the cou-
pling to decay channels, the 23PJ �0c and 21P1 h

0
c states

should lie well above theD �D andD� �D thresholds, and so
should have uninhibited strong decays. As has long been
known, the JPC = 2�+ 11D2 �c2 and JPC = 2�� 13D2

 2 states constitute an important special case: they lie
between the D �D and D� �D thresholds, but are forbidden
(because of their unnatural parity) to decay into D �D.
It is therefore plausible that they will appear as narrow
levels, and we now quantify this suspicion.

Properties of the missing levels. To estimate the de-
cay rates, we shall use the established values for the
�c; J= ; �c;  

0, and  (3770) states, adopt the Belle value
for M�0

c

, set Mhc = 3526 MeV, and choose M�c2 =
M 2 = 3815 MeV. We estimate the rates for hadronic
and radiative decays in turn.

Among hadronic decays, we consider transitions (��
emission) and annihilations. To estimate the �+�� +
�0�0 transition rates, we use the standard multipole ex-
pansion of the color gauge �eld [17, 18, 19] to express the
E1-E1 transition rates through the Wigner-Eckart theo-
rem given in Eqn. (3.5) of Ref. [20], with experimental
inputs given in Table X of that paper. The results are
shown in Table II. For present purposes, the essential
lesson is that we do not expect the �� transition rates to
be large for the missing levels of charmonium.

TABLE II: Hadronic decay widths of charmonium states.

c�c state Decay Partial Width
11S0 �c ! gg 17:4� 2:8 MeV [21]
13S1 J= ! ggg 52:8� 5 keV [22]
11P1 hc ! ggg 720 � 320 keVa

13P0 �c0 ! gg 14:3� 3:6 MeVb

13P1 �c1 ! ggg 0:64� 0:10 MeVb

13P2 �c2 ! gg 1:71� 0:21 MeVb

21S0 �0c ! gg 8:3� 1:3 MeVc

�0c ! ���c 160 keVd

23S1  0 ! ggg 23� 2:6 keV [22]
 0 ! ��J= 152 � 17 keV [22]
 0 ! �J= 6:1� 1:1 keV [22]

11D2 �c2 ! gg 110 keVe

�c2 ! ���c � 45 keVd

13D1  ! ggg 216 keVf

 ! ��J= 43� 15 keVg

13D2  2 ! ggg 36 keVf

 2 ! ��J= � 45 keVd

13D3  3 ! ggg 102 keVf

 3 ! ��J= � 45 keVd

aComputed from 3PJ rates using formalism of [23]; also see [24].
bCompilation of data analyzed by Maltoni, Ref. [23].
cScaled from �(�c ! gg).
dComputed using Eqn. (3.5) of Ref. [20].
eComputed using Eqn. (3).
fComputed using Eqn. (2).
gFrom rates compiled in Table X of Ref. [20].

For the annihilations into two or three gluons, we use
the standard (lowest-order) perturbative QCD formu-
las [25] to scale from available measurements for related
states. This is a straightforward exercise for the S-wave
levels. We use Maltoni's analysis [23] of the 3PJ annihi-
lation rates to estimate the rate for hc ! ggg. The rates
for annihilations of the 3DJ states into three gluons (via
color-singlet operators) are given by [26, 27]

�(3DJ ! ggg) =
10�3s
9�

CJ
jR

(2)
n2 (0)j

2

m6
c

ln 4mchri ; (2)

where R
(`)
n` � d`Rn`(r)=dr

`
��
r=0

, hri =
R1
0dr r u

2
n`(r), and

CJ =
76
9
; 1; 4 for J = 3; 2; 1. A complete analysis (includ-

ing color-octet operators as well) has too many unknowns
to be of use [39]. The strengths of the J = 3; 2; 1 anni-
hilations are more generally proportional to CJ , even if
color-octet operators dominate [28]. The two-gluon an-
nihilation rate of the 1D2 state is given by [29]

�(1D2 ! gg) =
2�2s
3

jR(2)
n2 (0)j

2

m6
c

: (3)

Our estimates for the annihilation rates are collected in
Table II. The expectation for �(�0c ! gg) is to be com-
pared with the Belle value of 15� 24 (stat) MeV [11].
The most prominent radiative decays of charmonium

states are the E1 transitions, for which the rate [29, 30]
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is given by

�(n̂ 2s+1`J
E1
�! n̂0 2s+1`0J 0 ) =

4�e2c
3

(2J 0 + 1)k3

�jEn̂`:n̂0`0 j
2 �max(`; `0)

�
J 1 J 0

`0 s `

�2

;

(4)

where ec =
2
3 is the charm-quark charge, k is the photon

energy, the E1 transition matrix element is En̂`:n̂0`0 =
3
k

R1
0dr un`(r)un0`0(r)

�
kr
2 j0(

kr
2 ) � j1(

kr
2 )
�
+O(k=mc), n̂ �

n � ` is the radial quantum number, and f:::g is a 6-j
symbol. For M1 transitions, the rate is given by

�(n̂2s+1`J
M1
�! n̂02s

0+1`J 0 ) =
4�e2c
3m2

c

(2J 0+1)k3jMn̂`:n̂0`j
2 ;

(5)
where Mn`:n0` =

R1
0dr un`(r)un0`(r)j0(

kr
2 ).

The calculated rates for the prominent transitions
among charmonium states are shown in Table III. Val-
ues enclosed in parentheses have been corrected for the
e�ects of coupling to decay channels, following the proce-
dure developed in [16]. The calculated values reproduce
the patterns exhibited by measurements, and are in good
agreement with other calculations in the literature [31].
We expect them to provide reasonable guidance to the
radiative decay rates of the missing charmonium levels.
Integrating all the calculated rates, we note that the

radiative decays should be prominent, with branching
fractions B(hc ! �c) �

2
5 , B(�c2 ! hc) �

2
3 , and

B( 2 ! �c1;2) �
4
5 , of which B( 2 ! �c1) �

2
3 .

Charmonium production in B decays. Expectations
for the fractions of B-meson decays leading to charmo-
nium production are presented in Table IV. To estimate
the B ! 1S0 production rates, we appeal to the sug-
gestion [35] that the ratio of spin-singlet to spin-triplet
decay rates is relatively insensitive to poorly calculated
matrix elements, �(B ! n3S1+X)=�(B ! n1S0+X) =
1+8m2

c=m
2
b � 1:5. The inclusive production of 1P states

in B decays can be expressed [40] in terms of color-singlet
and color-octet contributions as [36]:

�(b! hc +X)=�(b! `���` +X) � 14:7 eH8

�(b! �c0 +X)=�(b! `���` +X) � 3:2 eH8

�(b! �c1 +X)=�(b! `���` +X) � 12:4 eH1+ 9:3 eH8

�(b! �c2 +X)=�(b! `���` +X) � 15:3 eH8 (6)

Using the measured rates for inclusive �c1 and �c2 pro-
duction summarized in Table IV we extract eH8 = (8:95�

3:79) � 10�5 and eH1 = (2:18� 0:31) � 10�4, which de-
termine the inclusive branching fractions for �c0 and hc.
No measurements exist to guide our expectations for the
production of 1D states in B decays, so we must rely for
the moment on theoretical calculations [34] that suggest
production rates roughly comparable to those for other
charmonium states.

TABLE III: Calculated and observed rates for radiative tran-
sitions among charmonium levels in the potential (1).

 energy Partial width (keV)
Transition k (MeV) Computed Measureda

 
M1
�! �c 115 1.92 1:13�0:41

�c0
E1
�! J=  303 120 (105)b 98�43

�c1
E1
�! J=  390 242 (215)b 240�51

�c2
E1
�! J=  429 315 (289)b 270�46

hc
E1
�! �c 504 482

�0c
E1
�! hc 126 51

 0
E1
�! �c2 128 29 (25)b 22�5

 0
E1
�! �c1 171 41 (31)b 24�5

 0
E1
�! �c0 261 46 (38)b 26�5

 0
M1
�! �0c 32 0.04

 0
M1
�! �c 638 0.91 0:75�0:25

 (3770)
E1
�! �c2 208 3.7

 (3770)
E1
�! �c1 250 94

 (3770)
E1
�! �c0 338 287

�c2
E1
�!  (3770) 45 0.34

�c2
E1
�! hc 278 303

 2
E1
�! �c2 250 56

 2
E1
�! �c1 292 260

aDerived from Ref. [22].
bCorrected for coupling to decay channels as in Ref. [16].

Observing the missing narrow states. Radiative tran-
sitions among charmonium levels are the key to dis-
covering the remaining narrow states. Approximately
90K B ! K�c events are produced in the Belle ex-
periment's data sample. Using the production rates of
Table IV, and making the plausible assumption that
B(B ! K(�) + (c�c))=B(B ! X + (c�c)) is univer-
sal, we estimate that 70K K�c events are directly pro-
duced, 8.1K events arise in the cascade B ! K�c2 !
K(280 MeV)hc ! K(280 MeV)(500 MeV)�c, and
11.7K events arise from B ! Khc ! K(500 MeV)�c,
and that the sample that yielded the 39 � 11 �0c discov-
ery events was about 30K events. Likewise, the large
radiative branching ratios of  2 to �c1;2 and of �c1;2
to J= provide another striking double-gamma transi-
tion with B(B ! X 2)

P
J=1;2B( 2 ! �cJ)B(�cJ !

J= )=B(B ! XJ= ) ' 0:12. The signal B ! K�c2 !
K(280 MeV)hc ! K(280 MeV) + hadrons may also
provide a simultaneous observation of �c2 and hc.

We close with a few examples of the insights to be ex-
pected from the discovery and investigation of the miss-
ing charmonium levels. The displacement of the 11P1 hc
from the 13PJ centroid is sensitive to Lorentz structure
of the interquark potential. The  0-�0c splitting is sen-
sitive to a number of inuences beyond simple potential
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TABLE IV: Measured and estimated branching fractions for
B decays to quarkonium levels.

c�c state �(B ! (c�c) +X)=�(B ! all) (%)
11S0 �c � 0:53a

13S1 J= 0:789� 0:010� 0:034bc

11P1 hc 0:132� 0:060d

13P0 �c0 0:029� 0:012d

13P1 �c1 0:353� 0:034� 0:024be

13P2 �c2 0:137� 0:058� 0:012b

21S0 �0c � 0:18a

23S1  0 0:275� 0:020� 0:029b

11D2 �c2 0:23f

13D1  0:28f

13D2  2 0:46f

13D3  3 0:65f

aScaled from 3S1 rate.
bData from [32] and [33].
cKnown feed-down from 2S state removed.
dScaled from 3P1;2 rates using Eqn. (6).
eKnown feed-down from 2S and 1P states removed.
fComputed; see [34].

models, including the e�ect of virtual decay channels [37].
The positions of �c2 and  2 will further constrain ana-
lytic calculations of spin-dependent forces. When com-
pared with  (3770), they will provide another test of the
inuence of decay channels in the charm threshold re-
gion. Observation of  (3770) in B ! K(�)D �D will help
to calibrate expectations for the production of the nar-
row states. The same �nal state might yield evidence for
 3

3D3. The details of  (3770) decays are sensitive to
S-D mixing [27].

Outlook: The discovery of �0c as a product of B decays
realizes a long-held hope and raises new possibilities for
�lling out the charmonium spectrum. The CP violation
experiments will enrich our knowledge of B ! (c�c) +X,
aiding our ability to estimate the production of unknown
states.
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